184/2024

Maximum: 100 marks

Time: 1 hour and 30 minutes

- 1. In the classical conditioning experiment, conducted originally by Ivan Petrovich Pavlov, a restrained hungry dog is given meat powder (food) in association with the sound of a bell. Choose the correct statement regarding the classical conditioning experiment:
 - (A) Bell is the unconditioned stimulus and food is the conditioned stimulus
 - (B) Bell is the unconditioned stimulus and salivation in response to food is the conditioned response
 - (C) Bell is the conditioned stimulus and food is the unconditioned stimulus
 - (D) Bell is the unconditioned stimulus and salivation in response to food is the unconditioned response
- 2. DNA barcoding is a promising method to identify organisms. Which is the most commonly used DNA barcode region for identifying animal species?

(A) RuBisCO gene

(B) 18S rRNA gene

(C) Cytochrome B

(D) COI

3. In the modern study of organic evolution, the work by Peter R. Grant and Rosemary Grant is especially mentioned, as they reviewed Charles Darwin's observations on the bird species now known as Darwin's Finches. If the number of species of Darwin's Finches on Cocos island is designated as (a) and on the Galápagos Islands of Ecuador is designated as (b), then choose the right statement in which the number of species is used instead of (a) and (b):

(A) a = 3 and b = 14

(B) a = 1 and b = 14

(C) a = 14 and b = 2

(D) a = 2 and b = 12

- 4. Chromosomal mutations are proven to be an important factor in the course of evolution, especially when considering the neutral theory of molecular evolution. In one peculiar example, the Karyotype of one species (Species 1) contain chromosomes more than six times in the other (Species 2) closely related (in terms of morphology and anatomy) species. Choose the correct species pair from the below given name pairs that show this condition:
 - (A) Species 1-Naja naja and Species 2-Naja nigricollis
 - (B) Species 1-Ophiophagus hanna and Species 2-Naja naja
 - (C) Species 1-Muntiacus reevesi and Species 2-Muntiacus muntjac
 - (D) Species 1-Rusa unicolor and Species 2-Rusa timorensis

A

	(A)	Leucine and Histidine	(B)	Isoleucine and Tyrosine						
	(C)	Alanine and Glycine	(D)	Leucine and Glutamine						
6.	Which mass extinction event was known to be connected with Chicxulub crater?									
	(A)	K-T Extinction	(B)	P-T Extinction						
	(C)	Ordovician-Silurian Extinction	(D)	Triassic-Jurassic Extinction						
7.	Choose the right name of the group of human populations found in the Indian region with which the Indigenous Andaman Islanders are more related:									
	(A)	Ancestral North Indians	(B)	Middle Easterners						
	(C)	Ancestral South Indians	(D)	Central Asians						
8.		fs are known for their exceptional e false statement from the below gi								
	(A)	Corals carry symbiotic Archaea Coral Reef Ecosystem	which are	e the major primary producers in						
	(B)	Coral polyps carry Zooxanthella Coral Reef Ecosystem	which are	e the major primary producers in						
	(C)	Zooxanthella is able to use carb	on dioxid	e and waste materials from their						
	(D)	Coral polyps carry flagellate proti reef ecosystems	sts which	are the primary producers in coral						
9.		e of the theory proposed by Ly s is given in the following options.	_							
	(A)	Mitochondrial Origin	(B)	Chloroplast Origin						
	(C)	Endosymbiotic theory	(D)	Endoplasmic Origin						
10.	_	ven names are of mammalian spe e name of a species that is endemic								
	(A)	Hemitragus jemlahicus	(B)	Nilgiritragus hylocrius						
	(C)	Cuon alpinus	(D)	Bos gaurus						
11.		nique used by a researcher in on of his own attitudes or feelings is		spondent unconsciously provides						
	(A)	Association techniques	(B)	Projective techniques						
	(C)	Verbal techniques	(D)	Interview techniques						
184/	2024	4		${f A}$						

Which are the amino acids produced in the famous Miller-Urey experiment?

5.

12.	How	long	is the term of copyright protect	tion in India?	
		(A)	Lifetime of the creator, plus 3	30 years after	death
		(B)	10 years from the date of crea	ation	
		(C)	Lifetime of the creator, plus 2	20 years after	death
		(D)	Lifetime of the creator, plus 6	30 years after	death
13.	A re	searc	h design includes :		
	(i)	Cho	ice between using qualitative o	r quantitative	methods.
	(ii)	A w	ay of conducting research that	is not grounde	d in theory.
	(iii)	Proc	cedures and techniques to be us	sed for gatheri	ng information.
	(iv)	Mar	nipulating the circumstances, s	ituation, or ex	perience.
		(A)	(iv) and (i)	(B)	(ii) and (iii)
		(C)	(i) and (iii)	(D)	(ii) and (iv)
14.	Orde	er the	various steps of the research p	process:	
	(i)	Data	a Analysis		
	(ii)	Нур	othesis testing		
	(iii)	Fori	mulating the hypothesis		
	(iv)	Dete	ermining sample design		
		(A)	(iv), (iii), (i), (ii)	(B)	(iii), (iv), (i), (ii)
		(C)	(iv), (iii), (ii), (i)	(D)	(iii), (i), (iv), (ii)
15.	In q	ualita	ative research, "triangulation" r	refers to:	
		(A)	Using three researchers to co	nduct the stud	ly
		(B)	Validating data by cross-chec	king with mul	tiple sources or methods
		(C)	Analyzing data three times fo	or consistency	
		(D)	The formation of hypotheses	based on three	e theoretical frameworks
16.		_	oling technique that a Research istics of the population are not		commend when the exact size and have the following features:
	(i)	Eve	ry member does not get equal c	hance in sam	ole
	(ii)	Owr	n judgment is used to select a s	ample	
	(iii)	Ran	dom selection is opted		
	(iv)	Rese	earcher may select individuals	who are most	accessible
		(A)	(i), (iii) and (iv)	(B)	(i), (ii) and (iii)
		(C)	(ii), (iii) and (iv)	(D)	(i), (ii) and (iv)
A				5	184/2024

17.	17. The normal distribution has the following features:							
	 (i) It is completely defined by the mode and standard deviation (ii) The mean and standard deviation are the key parameters (iii) The mean, median and mode are all identical (iv) It has two humps 							
		(A) (C)	(i) and (iv) (i) and (iii)	(B) (D)	(ii) and (iii) (ii) and (iv)			
18.	Pie o	harts	are used to show:					
	(i) (ii) (iii) (iv)	Rela Shov	various sections are divided tionship of parts to the whole whow one whole is related to other wi each segment represents contribution		ategory to the whole			
		(A)	(i) and (ii)	(B)	(ii) and (iv)			
		(C)	(i) and (iv)	(D)	(i) and (iii)			
19.	The t-test used for evaluating the effectiveness of a treatment group (1) compared to a control group (2) is useful to							
	(i) (ii) (iii) (iv)	Test Test	pare two groups to see whether their significance of correlation coefficient significance of regression coefficient pare whether their medians differ	means	differ			
		(A)	(i), (ii) and (iii)	(B)	(ii) and (iv)			
		(C)	(i), (iii) and (iv)	(D)	(i), (ii) and (iv)			
20.	Which is the test to compare the observed values in your data to the expected values that you would see if the null hypothesis is true?							
		(A)	ANOVA	(B)	Chi-square tests			
		(C)	Regression	(D)	Correlation			
21.	Whi	ch typ	e of radiation is most likely to cause a	genetic	damage in human?			
		(A)	Alpha particles	(B)	Gamma rays			
		(C)	Non-ionizing radiation	(D)	Beta particles			
22.	The	prima	ary effect of ionizing radiation on prot	ein is :				
		(A)	Conversion into lipids					
		(B)	Complete destruction of protein mol	ecules				
		(C)	Increased rate of protein synthesis					
		(D) Cross-linking of protein chains and fragmentation						

23.	An ideal n	noiecule that can diffuse directly a	across tne c	sell membrane snould be :				
	(A)	Large and hydrophilic	(B)	Small and non-polar				
	(C)	Charged ions	(D)	Bound to carrier proteins				
24.	Which pro	operty of radioactive tracers make	es them suit	cable in biological studies?				
	(A)	Long half-lives to ensure constant	nt tracing					
	(B)	Ability to emit visible light						
	(C)	Detectable radiation emission w	ithout alter	ring the system's chemistry				
	(D)	High chemical reactivity						
25.	The chem for:	ical fixation during biological sp	ecimen pre	eparation for TEM primarily helps				
	(A)	Preventing radiation damage						
	(B)	Removing impurities						
	(C)	Preserving the structural integr	ity of the sa	ample				
	(D)	Increasing electrical conductivit	У					
26.	How do te	emperature affect pH measuremen	nt?					
	(A)	Changes the conductivity of the	solution					
	(B)	Only affects alkaline solutions						
	(C)	No effect on pH measurement						
	(D)	Alters the ionization of water						
27.	What elen	ment in the body is primarily resp	onsible for	generating the MRI signal?				
	(A)	Carbon	(B)	Nitrogen				
	(C)	Hydrogen	(D)	Oxygen				
28.	In spectrophotometry, what does a peak in the absorbance spectrum indicate?							
	(A)	Wavelength at which maximum	light is abs	sorbed				
	(B)	Wavelength at which maximum	light is tra	nsmitted				
	(C)	Molecular weight of the sample						
	(D)	Concentration of the sample						
29.	Which one	e is a limitation of immunoelectro	phoresis?					
	(A)	Antibodies cannot be detected						
	(B)	Very expensive equipments are	required					
	(C)	Time-consuming and requires sl	killed interp	pretation				
	(D)	Not useful for detecting complex	mixtures o	of proteins				
30.	Retention	time (tR) in HPLC refers to:						
	(A)	Total runtime of the chromatogr	raphic proce	ess				
	` '							
	(B)	Time a compound spends in the	detector					
	(B) (C)	Time a compound spends in the Time taken for the mobile phase		rough the column				

31.	1. What is the source of the ATP used by muscles for vigorous activity that may last 10 to 15 seconds?							
	(A)) glycolysis of glucose in the cell cytoplasm forms ATP						
	(B)	the ATP that is stored in muscle cel	ls as AT	TP				
	(C)	aerobic respiration in the mitochono	dria pro	duces the ATP				
	(D)	creatinine phosphate in muscle and	ADP re	eact to form the required ATP				
32.	What is th	he function of "intrinsic factor" in gas	tric juic	e?				
	(A)	to protect the stomach lining agains	st hydro	chloric acid				
	(B)	to activate pepsinogen						
	(C)	to assist with the absorption of vitar	$\min \mathrm{B}_{12}$					
	(D)	it stimulates the release of gastrin						
33.		s-section view of the spinal cord, the posterior grey horn of this structure		-				
	(A)	the axons of motor neurons	(B)	the cell bodies of interneurons				
	(C)	the cell bodies of sensory neurons	(D)	the cell bodies of motor neurons				
34.	What is th	he purpose of 'blocking step' in ELISA	?					
	(A)	To enhance the sensitivity of assay						
	(B)	To remove unbound antigens						
	(C)	To prevent non-specific binding of a	ntibodie	es				
	(D)	To inhibit the activity of enzymes						
35.	The comp	lement system is activated by:						
	(A)	IgG and IgM	(B)	IgE and IgA				
	(C)	IgG and IgD	(D)	IgM and IgE				
36.	The type of	of T cells that recognize antigens pres	sented b	y MHC Class I molecules :				
	(A)	Memory T-cells	(B)	CD8+ T-cells				
	(C)	CD4+ T-cells	(D)	Regulatory T-cells				
37.	How does	an enzyme accelerate a reaction?						
	(A)	Increasing kinetic energy of the sub	strate					
	(B)	Increasing the free energy differenc		en the enzyme and substrate				
	(C)	Decreasing the energy required to fo		-				
	(D)	Decreasing the kinetic energy of sub						
38.	Find the i	incorrect match :						
	(A)	Tay-Sachs Disease : Abnorma	l glycos	aminoglycan storage				
	(B)			e of glycosphinglolipids				
	(C)			enylalanine in blood				

Low level of galactose in blood

(D) Galactosemia

	(A	A) A	Asparagine and lysine	(B)	Asparagine and threonine
	((C) I	Lysine and histidine	(D)	Tyrosine and serine
40.	The rol	le of t	chiolase enzyme in beta oxidation of	fatty a	cid:
	(A	A) I	Hydrogenation	(B)	Dehydration
	((C) I	Decarboxylation	(D)	Cleavage
41.			he following technique helps a the membranes of living cells usin		
	(A	A) I	ELISA	(B)	FRAP
	((C) S	STEM	(D)	TBST
42.	Coated protein		cles of Receptor-Mediated Endocyto	sis are	coated with which of the following
	(A	A) (COPI	(B)	COPII
	((C) (Clathrin	(D)	AP-1
43.	Which	amor	ng the following statement is true fo	r RISC	?
	(A	A) r	miRNA shuts down gene expression	at post	-transcriptional level
	(H	B) s	siRNA shuts down gene expression a	at trans	slational level
	((C) r	niRNA shuts down gene expression	at repl	ication level
	(I	D) s	siRNA shuts down gene expression a	at post-	transcriptional level
44.			enger evoke different responses in his among the following options?	differe	nt cells, what could be the correct
	(i) D	iffere	ent cells have different set of recept	ors	
	` '		tors of different cells are coupled to		nt internal machinery
	(A	A) (Option (i)	(B)	Option (ii)
	((C) I	Both option (i) and (ii) are correct	(D)	Both option (i) and (ii) are wrong
45.	Which apoptos		ng the following is presumed to b	e the r	reason for cell detachment during
	(A	A) I	FAK	(B)	PKC
	((C) (CAD	(D)	PKB
46.	Mice la	cking	g a gene for claudin-1 dies of dehydr	ation –	what could be the reason for this?
	(A	A) I	Lack of water absorption in Henle's	loop	
	(I	B) I	Lack of water absorption in the alim	entary	canal
	((C) \	Water loss due to lack of tight juncti	on	
	(I	D) \	Water loss due to excessive sweating	g	
A			9		184/2024

39. Aminoacids responsible for N-linked and O-linked glycosylation of proteins :

Iden	(A) (C)	(i), (ii) and (iii) only (ii), (iii) and (iv) only he gene, the absence of whose production of the insect embryo and inhibitation of the insect embryo embr		_					
Iden	(A) (C)	(i), (ii) and (iii) only (ii), (iii) and (iv) only he gene, the absence of whose produ	(D)	(i), (ii), (iii) and (iv) ds to the production of hunchback					
(1V)	(A)	(i), (ii) and (iii) only	` '	.,, .,					
(17)	2202								
(i) (ii) (iii)	Sulf Hya	ated mucopolysaccharides luronic acid							
Zona			iin :						
	(D)		_						
	(C)	Prospective potency of the epidermi	s area i	n an early gastrula is restricted to					
	(A) (B)	tissue under the influence of an indu	uctor	-					
	rrect?			•					
	(A) (C)	Integrins	(D)	Selectins None above					
	oenvi	ronment?							
Amo	ng th	ne following, which family of recepto	rs attac	thes the cell to their extracellular					
	(A) (C)	Caveolin	(D)	Cadherin					
	cell c	ycle. Which among the following is the	e regula						
	(C)	Both (i) and (ii)	(D)	Option (ii) None					
(i) (ii)	Cyto	osine can be converted to uracil							
	Natural selection favoured the use of thymine rather than uracil in ${\rm DNA}$ – what could be the possible reason among the following options?								
	(A) (C)	Histone methylation Centromere determination	(B) (D)	DNA methylation All above					
	the p (i) (ii) Prot in a Amore micro White income (i) (ii) (iii) (iii)	Natural sethe possible (i) Thys (ii) Cyto (A) (C) Protein nation a cell cyto (A) (C) Among the microenvirus (A) (C) Which and incorrect? (A) (B) (C) (D) Zona pello (i) Glyo (ii) Sulf (iii) Hya	Natural selection favoured the use of thymine the possible reason among the following option (i) Thymine has higher resistance to photoch (ii) Cytosine can be converted to uracil (A) Option (i) (C) Both (i) and (ii) Protein named Maturation Promoting Factor (in a cell cycle. Which among the following is the (A) Cyclin (C) Caveolin Among the following, which family of receptor microenvironment? (A) Cadherins (C) Integrins Which among the following statements conceincorrect? (A) Reacting cells in a developing entissue under the influence of an induction (C) Prospective potency of the epidermithen nervous system and normal skin (D) On completion of gastrulation, then potency of embryonic tissues Zona pellucida covering mammalian eggs contaction (i) Glycoproteins (ii) Glycoproteins (iii) Hyaluronic acid	Natural selection favoured the use of thymine rather the possible reason among the following options? (i) Thymine has higher resistance to photochemical (ii) Cytosine can be converted to uracil (A) Option (i) (B) (C) Both (i) and (ii) (D) Protein named Maturation Promoting Factor (MPF) is in a cell cycle. Which among the following is the regular (A) Cyclin (B) (C) Caveolin (D) Among the following, which family of receptors attack microenvironment? (A) Cadherins (B) (C) Integrins (D) Which among the following statements concerning the incorrect? (A) Reacting cells in a developing embryo continuous tissue under the influence of an inductor (B) The competence for neural induction is rest to the nervous system and normal skin epithe (D) On completion of gastrulation, there is a repotency of embryonic tissues Zona pellucida covering mammalian eggs contain: (i) Glycoproteins (ii) Sulfated mucopolysaccharides (iii) Hyaluronic acid					

47. Which among the following can be described as epigenetic phenomena?

- **54.** The phenomenon in which animals retain their juvenile form but the gonads and germline develop at a faster rate than normal, and they become sexually mature while the rest of the body is still in a juvenile phase:
 - (A) Neoteny

(B) Progenesis

(C) Direct development

(D) All the above

- **55.** Match the following:
 - (1) Prothoracicotropic Hormone
 - (2) 20-hydroxy ecdysone
 - (3) Juvenile Hormone
 - (4) Precocenes
 - (A) 1-c, 2-a, 3-b, 4-d
 - (C) 1-b, 2-c, 3-d, 4-a

- (a) molting
- (b) prevent metamorphosis
- (c) premature metamorphosis
- (d) production of ecdysone
- (B) 1-d, 2-c, 3-a, 4-b
- (D) 1-d,2-a, 3-b,4-c
- **56.** Genomic imprinting in humans can result in :
 - (i) Inactivation of the gene for insulin-like growth factor 2 (Igf-2) present on chromosome derived from the mother.
 - (ii) Activation of Igf-2r gene present on chromosome derived from the mother
 - (A) Only (i) is correct

- (B) Only (ii) is correct
- (C) Both (i) and (ii) are correct
- (D) Both (i) and (ii) are incorrect
- **57.** Microsatellite DNA can be found within:
 - (A) centromeres and telomeres, and regulatory flanking regions of genes
 - (B) centromeres and telomeres, and regulatory flanking regions and intronic regions of genes
 - (C) centromeres and telomeres, and regulatory flanking regions, intronic regions, and transcription units of genes
 - (D) centromeres and telomeres only
- **58.** Which among the following can't be a reason for different phenotypic consequences of epigenetics?
 - (A) a single nucleotide substitution
 - (B) a covalent modification of DNA (methylation of a base)
 - (C) A proteinaceous structure that assembles on DNA
 - (D) A protein aggregate that controls the conformation of new subunits as they are synthesized
- **59.** Identify the incorrect statement :
 - (A) Epistasis may be in only in one direction, from one particular gene pair to another, or in both directions when each gene pair is mutually epistatic to the other
 - (B) ABO blood group inheritance follows multiple allelism and co-dominance
 - (C) Human skin colour is influenced by polygenic inheritance and environmental factors
 - (D) The amount of DNA in the haploid genome of an organism is always directly proportional to the complexity of the organism

- **60.** A man with congenital red-green colour blindness marries a normal woman :
 - (A) Their daughters and granddaughters will be colour blind
 - (B) Their daughters will be carriers and grandsons can be colour blind
 - (C) Half of their daughters and sons can be colour blind
 - (D) Their sons and grandsons will be colour blind
- **61.** Which among these is an example of niche partitioning?
 - (A) Two species competing for same resource
 - (B) Two species using different resources in the same environment
 - (C) Two species occupying different habitat
 - (D) None of the above
- **62.** Who proposed the Gaia hypothesis?
 - (A) Shelford

(B) James Lovelock

(C) Stephen Jay Gould

- (D) Liebig
- **63.** What is the primary purpose of an ecological pyramid?
 - (A) study nutrient cycle in an ecosystem
 - (B) compare productivity of different ecosystem
 - (C) study the flow of energy through an ecosystem
 - (D) all of the above
- **64.** What is carrying capacity in ecology?
 - (A) the rate at which population grow
 - (B) amount of resources available in an environment
 - (C) average number of individuals in a population over time
 - (D) maximum number of individuals that an environment can support indefinitely
- **65.** What is the significance of edge effect in ecology?
 - (A) increases the risk of species extinction
 - (B) increases the level of species richness
 - (C) decreases the level of species richness
 - (D) none of the above
- **66.** What is the primary focus of the Lotka-Volterra hypothesis?
 - (A) Ecosystem stability
 - (B) Mutualism and symbiosis
 - (C) Competition between species
 - (D) Predation and Prey dynamics

67.	Which of the following is a common method of wetland reclamation?								
	(A)	Planting of native vegetation	(B)	Construction of levees and dikes					
	(C)	Dredging and filling	(D)	All of the above					
68.	What is the primary role of remote sensing in ecology?								
	(A)	(A) To develop mathematical models of ecosystem							
	(B)	To collect field data on species po	pulation						
	(C)	To monitor environmental change	es and pat	terns over large areas					
	(D)	All of the above							
69.	What is th	ne aim of IPCC?							
	(A)	Public awareness about climate c	hange						
	(B)	International climate change neg	otiations						
	(C)	Provide funding for climate chang	ge researcl	h and projects					
	(D)	Conduct climate change resear makers	ch and p	rovide scientific advice to policy					
70.	What is th	ne main objectives of Wildlife Prote	ection Act	of 1972?					
	(A)	to promote ecotourism and wildlife based tourism							
	(B)	to regulate trade and commerce of wildlife products							
	(C)	provide a framework for the conservation and management of wildlife in India							
	(D)	control spread of wildlife diseases	3						
71.	Teichoic a	cids are present in the cell walls of	:						
	(A)	Only gram-positive bacteria							
	(B)	Only gram-negative bacteria							
	(C)	Both gram positive and negative bacteria							
	(D)	All prokaryotes							
72.		be the generation time of bacteria ential phase of growth?	ıl culture v	with a growth rate constant of 2 at					
	(A)	0.35 hours	(B)	0.5 hours					
	(C)	1 hour	(D)	2 hours					
73.	Nitrite is genera?	oxidised to nitrates in nitrogen of	cycle by n	nembers of which of the following					
	(A)	Nitrosomonas	(B)	Thiobacillus					
	(C)	Nitrobacter	(D)	All of the above					

74.	HIV (Human Immunodeficiency Virus) is a :								
	(A)	Enveloped RNA vii	rus		(B)	Non enveloped RNA Virus			
	(C)	Enveloped DNA vi	rus		(D)	Non enveloped DNA Virus			
75.	Oxidation	of pyruvate results	in th	e production o	of:				
	(A)	Succynyl Co-A			(B)	Acetyl Co-A			
	(C)	Phospho Enol Pyru	ıvate		(D)	Glucose			
76.	Proteins	are separated in SDS	S-PAC	GE on the basi	is of th	neir:			
	(A)	Charge			(B)	Affinity			
	(C)	Structure			(D)	Size			
77.	Lac~Z genfollowing		le Cl	oning Sites (N	ICS) i	n plasmids encode for which of the			
	(A)	Alpha — Galactosi	dase		(B)	Beta — Galactosidase			
	(C)	Gamma — Galacto	sidas	se	(D)	None of the above			
78.	Which of	the following is a cor	nmor	nly used cryo-p	protec	tant?			
	(A)	Water			(B)	1% Cetavlon			
	(C)	Glycerol			(D)	Glycine buffer			
79.	What is a	n Intellectual Prope	rty (I	P) license?					
	(A)	Registration of IP			(B)	Permission to use IP			
	(C)	Transfer of owners	hip		(D)	None of the above			
80.	Which pr	otein structure is cru	cial	for therapeuti	c prote	ein stability?			
	(A)	Primary		_	(B)	Secondary			
	(C)	Tertiary			(D)	Quaternary			
81.		A represents the so es the primary crop to Column A				agricultural pests and Column B e random order :			
	(1) Eari	as vittella	(a)	Banana					
	(2) <i>Chile</i>	o partellus	(b)	Cotton					
	(3) Nila	parvata lugens	(c)	Cabbage					
	(4) <i>Pent</i>	alonia nigronervosa	(d)	Rice					
	(5) <i>Plute</i>	ella xylostella	(e)	Maize					
	(A) (B) (C) (D)	ose the correct comb (1)-(b), (2)-(a), (3)-(a) (1)-(b), (2)-(e), (3)-(a) (1)-(d), (2)-(c), (3)-(a) (1)-(e), (2)-(a), (3)-(a)	e), (4) d), (4) a), (4))-(c), (5)-(d))-(a), (5)-(c))-(e), (5)-(b)					

A				15	184/2024 [P.T.O.]					
		(D)	Using gel electrophoresis to o	onfirm produc	t size					
		(C)	Increasing the number of am	plification cycl	es					
		(B)	Implementation of rigorous c	ontamination o	control measures					
		(A)	Use of high-fidelity polymera	ses						
87.			the following factors is most diagnostic assays?	critical in m	inimizing false-positive results in					
		(C)	(ii) and (iv)	(D)	(i) and (iii)					
		(A)	(ii) and (iii)	(B)	(i) and (iv)					
	Cho	ose th	ne correct answer							
	(iv)	PCF	amplifies the specific DNA se	quence and car	n sequence the entire genome					
	(iii)	Pare	ental diagnosis of specified disc	orders can be p	ossible by using PCR.					
	(ii)	PCF	t is effective for diagnosing the	diseases cause	ed by prions.					
	(i)	PCF	thas wide application for detec	ction of infectio	ous diseases and cancer diagnosis.					
86.		ch of nosis'		true about the	applications of PCR in molecular					
		(C)	(ii) and (v)	(D)	(i) only					
		(A)	(ii) and (iv)	(B)	(iii) only					
	Choo	ose th	e correct answer :							
	(v)	Whi	te-throated Kingfisher							
	(iv)	Blac	ek-and-Orange Flycatcher							
	(iii)	Indi	an Roller							
	(ii)	Gre	y -headed Bulbul							
	(i)	Rufo	ous Treepie							
85.	Whi	ch of	the following is/are the endemi	c bird(s) of the	Western Ghats?					
		(C)	22AA+XXY	(D)	18AA+A+XX					
		(A)	21AA+A+XY	(B)	22AA+X					
84.	Wha	t is tl	ne chromosomal composition of	an individual	with Klinefelter's syndrome?					
		(C)	Lernaeasis	(D)	Dropsy					
		(A)	Costiasis	(B)	Gyrodactylosis					
83.	Which of the following is an example of protistan disease in aquarium fish?									
		(C)	Cyprinus rubrofuscus	(D)	Horabagrus brachysoma					
		(A)	Dawkinsia filamentosa	(B)	Aplocheilus lineatus					

82. Which of the following fish is an exotic ornamental fish of Kerala?

- **88.** Which biochemical finding is most indicative of a defect in fatty acid oxidation, such as medium-chain acyl-CoA dehydrogenase (MCAD) deficiency?
 - (A) Elevated serum lactate levels
 - (B) Hyperammonemia
 - (C) Hypoketotic hypoglycemia
 - (D) Elevated serum ceramide levels
- 89. Which of the following statements correctly classifies the mammals based on their reproductive characters?
 - (A) Prototheria oviparous, pouch development, placenta nourishment
 - (B) Monotrems viviparous, no pouch development, placenta nourishment
 - (C) Eutheria viviparous, no pouch development, placenta nourishment
 - (D) Metatheria oviparous, pouch development, placenta nourishment
- **90.** Which of the following is the smallest live feed commonly used as a starter feed for newly hatched fish larvae?
 - (A) Rotifers

(B) Artemia

(C) Daphnia

- (D) Infusoria
- **91.** What distinguishes chimeric antigen receptor (CAR) T-cells from normal T-cells in their ability to fight cancer?
 - (A) CAR-T cells produce antibodies to neutralize cancer antigens
 - (B) CAR-T cells are equipped with synthetic receptors to identify specific tumour antigens independent of MHC presentation
 - (C) CAR-T cells have enhanced cytokine production to promote cancer cell apoptosis
 - (D) CAR-T cells are resistant to immune checkpoint inhibition by tumours
- **92.** What renders CRISPR different from other repetitive DNA sequences?
 - (A) The repeats are interspaced by similarly sized non-repetitive DNA and they are clustered in one or several loci on the chromosome
 - (B) The CRISPR sequences are mobile genetic elements that randomly insert into the genome, similar to transposons
 - (C) The repeats function solely as a template for RNA polymerase binding and do not encode any functional molecules
 - (D) The spacer sequences are identical copies of the repeats, serving no functional diversity

- **93.** Which of the following statements about Intracytoplasmic Sperm Injection (ICSI) is Incorrect?
 - (A) ICSI bypasses the natural sperm selection process by directly injecting a single sperm into the oocyte cytoplasm
 - (B) ICSI requires oocytes at the metaphase II (MII) stage to maximize fertilization success
 - (C) Embryos resulting from ICSI are guaranteed to have normal genetic material as the sperm bypasses the acrosome reaction
 - (D) ICSI is primarily indicated for severe male-factor infertility, such as low sperm count or motility
- **94.** In the context of the recent controversies surrounding gender testing in Olympic boxing, particularly with athletes possessing XY chromosomes, what role does the SRY gene play in the development of sexual characteristics?
 - (A) The SRY gene induces the formation of testes in XY individuals, leading to the production of testosterone and the development of male sexual characteristics
 - (B) The SRY gene prevents the development of male sexual characteristics in XY individuals and leads to the formation of ovaries instead
 - (C) The SRY gene causes the development of female reproductive organs in XY individuals, overriding the typical male sex-differentiating effects
 - (D) The SRY gene is responsible for the formation of external male genitalia but has no effect on internal reproductive organs in XY individuals
- **95.** Katalin Karikó and Drew Weissman were awarded the Nobel Prize in Physiology or Medicine for their research that led to the development of mRNA vaccines for COVID-19. What key discovery did they make regarding mRNA that enabled its use as a therapeutic tool?
 - (A) They developed a method to stabilize mRNA by encapsulating it in lipid nanoparticles, making it suitable for use in vaccines
 - (B) They identified that chemical modifications in mRNA could reduce immune system activation and enhance protein production
 - (C) They discovered how to synthesize mRNA in large quantities, overcoming previous limitations in production
 - (D) They found that mRNA could be used as a replacement for DNA in gene therapy applications
- **96.** Victor Ambros and Gary Ruvkun were awarded the 2024 Nobel Prize in Physiology or Medicine for their groundbreaking work on small RNA molecules. What did their research on the *lin-4* gene in *C. elegans* reveal about gene regulation?
 - (A) The *lin-4* gene produces a small RNA that accelerates the production of proteins by binding to mRNA
 - (B) The *lin-4* gene produces a small RNA that regulates gene expression by preventing the formation of complementary mRNA sequences
 - (C) The *lin-4* gene produces a small RNA that inhibits protein production by binding to complementary sequences in the *lin-14* mRNA
 - (D) The *lin-4* gene produces a small RNA that is responsible for initiating the transcription of the *lin-14* gene

- **97.** What unique evolutionary trait was observed in the newly discovered horned dinosaur *Lokiceratops rangiformis*?
 - (A) Ability to glide between trees
 - (B) Unique skull and horn patterns driven by sexual selection
 - (C) Adaptation for aquatic environments
 - (D) Evidence of social nesting behavior
- **98.** What recent discovery has provided evidence for learning capabilities in unicellular organisms?
 - (A) Stentor roeseli showed adaptive responses to repeated stimuli, supporting a form of elementary learning
 - (B) Memory storage in single cells is attributed solely to synaptic plasticity
 - (C) DNA methylation in unicellular organisms is exclusively linked to fatigue responses
 - (D) Single-cell learning mechanisms rely entirely on extracellular molecular interactions
- **99.** Which of the following recent discoveries has increased concerns about the potential spread of HPAI H5N1 to humans?:
 - (A) H5N1 virus has been detected in bovine milk, raising concerns about transmission to mammals
 - (B) The virus is now capable of airborne transmission between mammals, including humans
 - (C) H5N1 has become resistant to all antiviral medications currently available
 - (D) There has been a significant decrease in human immunity to H5N1 globally
- **100.** Which of the following is a key finding from the recent study that reconstructed the Tree of Life for modern birds?
 - (A) The diversification of modern birds occurred over a period of 50 million years
 - (B) The study identified a new grouping of birds called "Elementaves," which includes penguins, pelicans and hummingbirds
 - (C) The major bird groups, including Neoaves, evolved exclusively in the Southern Hemisphere
 - (D) The study revealed that songbirds and parrots share a distant relationship, not a close one

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK