100/2024

Maximum: 100 marks

Time: 1 hour and 30 minutes

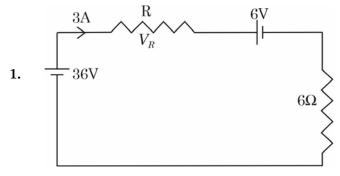


Fig. 1

For the circuit shown in Fig. 1, the voltage $\,V_{R}\,$ is :

(A) 22V

(B) 18V

(C) 12V

- (D) 10V
- **2.** For the circuit shown in Fig. 1, the resistance R is:
 - (A) 4.5Ω

(B) 4Ω

(C) 3.5Ω

- (D) 2Ω
- 3. Three resistances are connected from three terminals A, B, and C to a common point N. The resistances between A and N, B and N, and C and N are respectively 6 Ω ,3 Ω and 2 Ω . The equivalent resistance between A and B if the circuit is converted to delta is:
 - (A) 9Ω

(B) 2Ω

(C) 4Ω

- (D) 18 Ω
- 4. A circuit consists of a diode and a resistor connected in series. An alternating voltage $v=100\sin 314t$ is applied to this circuit. The rms and average values of the voltage across the resistor are:
 - (A) 70.7, 0

(B) 141.4, 31.85

(C) 100, 63.7

- (D) 50, 31.85
- 5. The average power delivered to a load impedance $4+j3\Omega$ by a current $8\sin(314t+30)$ is:
 - (A) 128 W

(B) 160 W

(C) 200 W

(D) 500 W

Α

- **6.** The voltage and current of an ac circuit are given by $v=100\cos(314t-30)$ and $i=10\sin(314t-15)$. The power drawn from the source is:
 - (A) 1000 W

(B) 707 W

(C) 353.5 W

- (D) 250 W
- 7. While analyzing a.c circuits using Thevenin theorem, the two basic components of the equivalent circuit are:
 - (A) Equivalent voltage source and equivalent series resistance
 - (B) Equivalent voltage source and equivalent series impedance
 - (C) Equivalent current source and equivalent parallel resistance
 - (D) Equivalent current source and equivalent parallel impedance

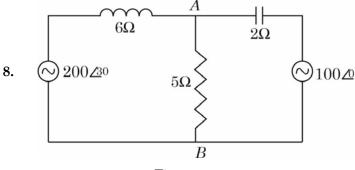


Fig. 2

What is the Norton's equivalent impedance between terminals A and B?

(A) $j 3\Omega$

(B) $j \otimes \Omega$

(C) $j 4\Omega$

- (D) $j 1.5 \Omega$
- 9. For a balanced three-phase star-connected load with phase sequence ABC, the voltage from line A to neutral is $100 \angle 30$. The voltage of line B in relation to line C is given by :
 - (A) $100\sqrt{3} \angle 150$

(B) $100 \angle -90$

(C) $100\sqrt{3} \angle -60$

- (D) $100 \angle 0$
- **10.** A resistance of 10Ω and an inductance of xmH are connected in series to a voltage source of $v = 100 \sin 100t$. What is the value x if the power factor is 0.7071?
 - (A) 7.07

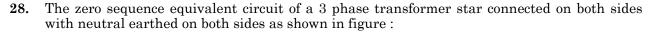
(B) 10

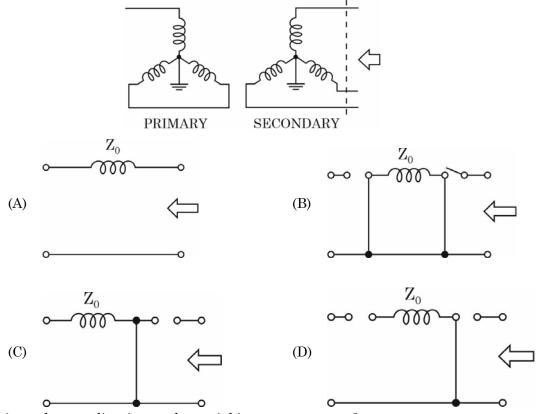
(C) 22.5

(D) 100

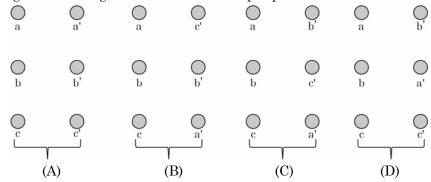
11. The critical speed of a DC generator is defined as the speed at which:							
	(A)	No voltage is induced in the armat	ure				
	(B)	The generated voltage is maximum	n				
	(C)	The generated voltage drops to zero					
	(D)	The commutation becomes ineffect	ive				
12.	The funct	ion of the commutator in a DC gener	rator is to);			
	(A)	Convert AC voltage to DC voltage					
	(B)	Control the speed of the generator					
	(C)	Change the direction of the induce	d current	5			
	(D)	Maintain constant voltage output					
13.	A DC gene	erator is said to be over compounded	d when :				
	(A)	Its generated voltage is greater that	an its ter	minal voltage			
	(B)	Its terminal voltage is greater than	ninal voltage is greater than its generated voltage				
	(C)	Its speed is greater than its rated s	speed				
	(D)	Its efficiency is maximum					
14.	Which par	rameter does not affect the regulation	on of a tra	ansformer?			
	(A)	Load power factor	(B)	Transformer core material			
	(C)	Frequency of the supply	(D)	Transformer winding resistance			
15.	The leaka	ge reactance of a transformer depen	ds prima	rily on :			
	(A)	Core material	(B)	Number of turns in the windings			
	(C)	Frequency of the supply	(D)	Size of the transformer			
16.	Which typ	oe of transformer core material exhib	oits the h	ighest permeability?			
	(A)	Silicon steel	(B)	Ferrite			
	(C)	Cast iron	(D)	Aluminum			
17.	All-day ef	ficiency is affected by:					
	(A)	Load fluctuations during the day					
	(B)	Temperature variations during the	e day				
	(C)	Neither (A) nor (B)					
	(D)	Both (A) and (B)					

18.	The primary advantage of a salient-pole rotor in alternators is:						
	(A)	Higher stability during load changes	}				
	(B)	Higher efficiency at high speeds					
	(C)	(C) Ease of manufacture and maintenance					
	(D)	Lower mechanical stresses					
19.	The powe	r factor of an alternator can be improv	ed by:				
	(A)	Adjusting the excitation					
	(B)	Adjusting load current phase differen	nce				
	(C)	Adjusting the speed of rotation					
	(D)	Both (A) and (B)					
20.	The pitch	factor in an alternator winding refers	to:				
	(A)	The ratio of conductor length to pole	pitch				
	(B)	The ratio of pole pitch to pole arc					
	(C)	The ratio of distribution factor to wir	nding f	actor			
	(D)	The ratio of turns per coil to total turns	rns in t	the winding			
21.		ission line with a characteristic imped What is the magnitude of the coefficie		80 Ω is terminated with an impedance effection?			
	(A)	0.2	(B)	5			
	(C)	1.5	(D)	2/3			
22.		nsmission line exhibiting significant most effective in mitigating it?	Ferra	nti effect, what type of compensation			
	(A)	Series capacitive compensation	(B)	Series inductive compensation			
	(C)	Shunt capacitive compensation	(D)	Shunt inductive compensation			
23.		ntext of pollution performance of ins g the flashover voltage of a contamina		s, which parameter is most critical for ulator?			
	(A)	Specific creepage distance					
	(B)	Dielectric strength of the insulator m	nateria	1			
	(C)	Surface roughness					
	(D)	Mechanical tensile strength					


- **24.** Which of the following is a factor of critical consideration when designing an SF6 circuit breaker to ensure reliable operation at extreme temperatures?
 - (A) The thickness of the insulator materials
 - (B) The dielectric strength of the SF6 gas under varying pressure
 - (C) The mechanical strength of the moving contacts
 - (D) The heating effect of the circuit breaker during operation
- **25.** What harmonic component is used to provide restraining torque in an over current relay to avoid false tripping during transformer inrush current?
 - (A) Fundamental


(B) Second harmonic

(C) Fifth harmonics


(D) Seventh harmonics

- **26.** Choose the correct option. Given:
 - Assertion [A] : Arcing ground faults are often more challenging to detect compared to solid ground faults.
 - Reason [R] : Arcing ground faults have higher impedance and produce less fault current, making detection by conventional protection schemes more difficult.
 - (A) Both Assertion and Reason are correct, and the Reason is the correct explanation for the Assertion
 - (B) Both Assertion and Reason are correct, but the Reason is not the correct explanation for the Assertion.
 - (C) Assertion is correct, but the Reason is incorrect
 - (D) Both Assertion and Reason are incorrect
- **27.** Choose the correct option. Given:
 - Assertion [A]: A higher power angle increases the critical clearing time of a transmission line.
 - Reason [R] : The critical clearing time is the time interval within which a fault must be cleared to maintain system stability.
 - (A) Both Assertion and Reason are correct, and the Reason is the correct explanation for the Assertion
 - (B) Both Assertion and Reason are correct, but the Reason is not the correct explanation for the Assertion
 - (C) Assertion is correct, but Reason is incorrect
 - (D) Assertion is incorrect, but Reason is correct

- **29.** Why is a relay coordination study crucial in a power system?
 - (A) To ensure all relays operate simultaneously
 - (B) To minimize the number of relays in the system
 - (C) To ensure selective isolation of the faulty section while maintaining system stability
 - (D) To reduce the cost of relay installation
- **30.** A double circuit line consists of three conductors in each circuit. The three conductors correspond to three phases, a, b, c and a', b' and c'. Conductors a and a' are electrically parallel and constitute one phase. Similarly conductors b, b' and c, c' form other phases. Which configuration will give lowest inductance per phase:

31.	Assertion [A] : Eddy current damping cannot be used in moving iron instruments.							
	Reason [R	-	magne	weak operating magnetic field, and the et required for eddy current damping field.				
	(A) Both [A] and [R] are individually true but [R] is not the correct explanation of [A]							
	(B)	Both [A] and [R] are true and [R] is the correct explanation of [A]						
	(C)	[A] is true, [R] is false						
	(D)	[A] is false, [R] is true						
32.	a balance		_	ower in a three-phase system supplying kW, respectively. It can be concluded				
	(A)	unity	(B)	zero				
	(C)	0.5 (lagging)	(D)	less than 0.5 (lagging)				
33.		etrodynamometer type wattmeter, the instrument gives:	ie induc	ctance of pressure coil circuit produces				
	(A)	high reading on lagging power factor	r and lo	w reading on leading power factor				
	(B)	low reading on lagging power factor	and hig	gh reading on leading power factor				
	(C)	low reading on lagging power factor	and zer	ro reading on leading power factor				
	(D)	indication of wattmeter is not affect	ed by th	ne effect of pressure coil inductance				
34.	C	of 10 mA is passed through it. The v		09 ohms gives full-scale deflection when small resistance connected to measure				
	(A)	0.001Ω	(B)	0.01 Ω				
	(C)	$0.02~\Omega$	(D)	$0.002~\Omega$				
35.	of 500 Ω a		on-indu	C. The instrument coil has a resistance active resistance of $2\mathrm{k}\Omega$. If 250V, 50Hz meter?				
	(A)	250V	(B)	less than 250V				
	(C)	more than 250V	(D)	no reading				
	(-)		(-)	-				
A		9		100/2024 [P.T.O.]				

36.	36. In measurement systems, errors arising from the pointer and the scale not being on the plane are called:			ter and the scale not being on the same				
	(A)	random error	(B)	backlash				
	(C)	hysteresis	(D)	parallax error				
37 .	The limiti		t measurer	the resistance of an unknown resistor. ment are ±1.2 % and 0.8%, respectively. tance?				
	(A)	±1.4%	(B)	±3.1%				
	(C)	±2.8%	(D)	±1.8%				
38.	The phase	e error in a single-phase energy me	eter is com	pensated by :				
	(A)	adjustable copper band placed ov	er the cent	tral limb of the shunt magnet				
	(B)	(B) lag adjustment						
	(C)							
	(D)	preliminary light load adjustmen	t					
39. Which of the following quantity cannot be measured/determined us				etermined using hall effect?				
	(A)	Magnetic field strength	(B)	Displacement				
	(C)	Type of semiconductor	(D)	Diffusion constant				
40.		20 cm from the screen. The defl		long and 5 mm apart. The centre of the asitivity for an accelerating voltage of				
	(A)	0.2 mm/V	(B)	0.8 mm/V				
	(C)	0.4 mm/V	(D)	0.1 mm/V				
41.	Two thyri	stors of same rating and same spec	cifications	:				
	(A) will have equal turn-on and turn-off periods							
	(B)	(B) will have equal turn-on, but unequal turn-off periods						
	(C)							
	(D)	will have unequal turn-on and tu	rn-off peri	ods				
42.	An SCR h	as a turn on time of 4 µs. An ideal	trigger pu	lse should have :				
	(A)	short rise time with a pulse width	h of 2.5 μs					
	(B)	short rise time with a pulse width	n of 5 μs					
	(C)	long rise time with a pulse width	of 2.5 µs					
	(D)	long rise time with a pulse width	of 5 µs					

43.	A single phase half wave controlled rectifier with resistive load is energised from a source of $400 \text{sin} (314 \text{t}) \text{V}$ supply. If the thyristor is fired at 60° , the average output voltage of the rectifier will be :				
	(A)	400/π V	(B)	300/π V	
	(C)	240/π V	(D)	120/π V	
44.	A single p	hase full bridge inverter	can operate in load	commutation mode if the load type is:	
	(A)	RL	(B)	Critically damped RLC	
	(C)	Under damped RLC	(D)	Over damped RLC	
45 .		hopper, $ m V_S$ is the source $ m v$ at voltage of the chopper $ m v$		n time, and f is the chopping frequency.	
	(A)	$V_{\rm S}$ ($T_{ m ON}$ / f)	(B)	$ m V_S T_{ON} f$	
	(C)	$V_{\rm S} ({\rm f} / {\rm T}_{ m ON})$	(D)	$V_{\rm S}/({ m fT_{ON}})$	
46.	The di/dt	rating of an SCR is specif	ied for its:		
	(A)	rising gate current	(B)	decaying anode current	
	(C)	rising anode current	(D)	decaying gate current	
47 .		ntial amplifier has a diffe n of the amplifier will be :	erential gain of 20,	000 and CMRR of 80dB. The common	
	(A)	250	(B)	2	
	(C)	0.5	(D)	0.004	
48.		p has a slew rate of 10 V of 1 MHz is :	/μs. The maximum	sinusoidal output voltage possible at a	
	(A)	$5/(2\pi)\mathrm{V}$	(B)	$5/\pi V$	
	(C)	5 π V	(D)	$10\pi\mathrm{V}$	
49.		s connected as an amplif		oper cut-off frequency of 10 Hz. If the cop gain of 100, the new upper cutoff	
	(A)	10 Hz	(B)	100 Hz	
	(C)	10 kHz	(D)	100 kHz	
50.	The turn	on time of an SCR in serie	es with an RL circui	t can be reduced by :	
	(A)	increasing R	(B)	increasing L	
	(C)	decreasing L	(D)	decreasing R	

The distribution that offers an appropriate framework for representing the inherent uncertainty and variability in activity durations within a PERT chart.				
(A)	Beta	(B)	Binomial	
(C)	Poisson	(D)	Normal	
_	-	-		
(A)	1	(B)	3	
(C)	4	(D)	5	
An initial	feasible solution for a transportation p	robler	n can be obtained using :	
(A)	Optimal solution	(B)	North-west corner rule	
(C)	Vogels's approximate solution	(D)	Minimal Cost Solution	
EOQ form	nula is taken using :			
(A)	Integral Calculus	(B)	Matrix Algebra	
(C)	Multi variance analysis	(D)	Differential Calculus	
Which of	the following principles is most commo	nly ap	plied in material handling?	
(A)	Unit Load Principle	(B)	Ohm's Principle	
(C)	Newton's Principle	(D)	Gravitation Principle	
In micro r	notion study SIMO stands for :			
(A)	Standard Industrial Motion			
(B)	Sequential and Intermittent Motion			
(C)	Simultaneous Motion Cycle			
(D)	Standardized Input and Output Moti	on		
			mean moves from its current value to a	
(A)	Continuous	(B)	Abrupt	
(C)	Random	(D)	Sustained	
OC curve	is used to determine the probability of	:		
(A)	Type I error	(B)	Type II error	
(C)	Both (A) and (B)	(D)	None of the above	
	uncertain (A) (C) If the pestime is 4 (A) (C) An initial (A) (C) EOQ form (A) (C) Which of (A) (C) In micro n (A) (B) (C) (D) The shift new value (A) (C) OC curve (A)	uncertainty and variability in activity durations (A) Beta (C) Poisson If the pessimistic completion time for an activitime is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity's duration is 4 days, the variance of the activity is 4 days and ac	uncertainty and variability in activity durations within (A) Beta (B) (C) Poisson (D) If the pessimistic completion time for an activity is time is 4 days, the variance of the activity's duration w (A) 1 (B) (C) 4 (D) An initial feasible solution for a transportation problem (A) Optimal solution (B) (C) Vogels's approximate solution (D) EOQ formula is taken using: (A) Integral Calculus (B) (C) Multi variance analysis (D) Which of the following principles is most commonly ap (A) Unit Load Principle (B) (C) Newton's Principle (D) In micro motion study SIMO stands for: (A) Standard Industrial Motion (B) Sequential and Intermittent Motion (C) Simultaneous Motion Cycle (D) Standardized Input and Output Motion The shift of the mean describes the process where the new value and stays constant thereafter is called: (A) Continuous (B) (C) Random (D) OC curve is used to determine the probability of: (B) Type I error (B)	

59. If the standard deviation of 0, 1, 2, 3, 9 is K , then the standard deviation of 10, will be:			e standard deviation of 10, 11, 12, 19	
	(A)	K	(B)	K+1
	(C)	K-1	(D)	K+2
60.	Standard	normal distribution has following	properties	:
	(A)	Both Mean and variance is same	and equal	to 1
	(B)	Both standard deviation and var	iance is sar	ne and equal to zero
	(C)	Mean value zero and variance va	ılue one	
	(D)	Both Mean and standard deviati	on is same	
61.	Which cry	stal structure is most commonly f	ound in pu	re iron at room temperature ?
	(A)	BCC	(B)	FCC
	(C)	HCP	(D)	None of the above
62.	Which fur	rnace is primarily used for the man	nufacturing	g of pig iron?
	(A)	Cupola furnace	(B)	Blast furnace
	(C)	Electric arc furnace	(D)	Induction furnace
63.	Which we	elding process uses a flux-coated el	ectrode to g	generate heat?
	(A)	TIG welding	(B)	MIG welding
	(C)	Arc welding	(D)	Gas welding
64.	What is the	he function of electrode coating in	arc welding	g?
	(A)	Improves electrical conductivity		
	(B)	Protects the weld from oxidation		
	(C)	Increases hardness of the weld		
	(D)	Acts as a heat insulator		
65.	Which typ	pe of welding is suitable for joining	thick secti	ons of metal in a single pass?
	(A)	Gas welding	(B)	TIG welding
	(C)	MIG welding	(D)	Thermit welding
66.	What is the	he primary cause of porosity in we	lds?	
	(A)	Inadequate shielding gas	(B)	Too high welding current
	(C)	Insufficient filler metal	(D)	Excessive welding speed
٨		1	2	100/2024

67.	-	pe of cutting involves the tool being e's rotation?	g fed	at an angle to the direction of the
	(A)	Orthogonal cutting	(B)	Oblique cutting
	(C)	Parallel cutting	(D)	Conventional cutting
68.	Which ma	achine tool is used primarily for produci	ng fla	t surfaces in metalworking?
	(A)	Lathe	(B)	Milling machine
	(C)	Shaper	(D)	Drilling machine
69.	What is th	ne main purpose of indexing in milling o	perat	tions?
	(A)	To rotate the workpiece		
	(B)	To align the cutting tool		
	(C)	To move the workpiece longitudinally		
	(D)	To divide the workpiece for angular cu	ıts	
70.	Which pr load?	operty of materials describes the abil	ity to	resist permanent deformation under
	(A)	Toughness	(B)	Ductility
	(C)	Hardness	(D)	Elasticity
71.		e of contact made by pure water having is approximately:	capill	ary rise in a glass capillary tube of 1cm
	(A)	0°	(B)	5°
	(C)	12°	(D)	16°
72.	Tooth pas	te is an example of :		
	(A)	Pseudo plastic fluid	(B)	Dialatant fluid
	(C)	Bingham plastic fluid	(D)	Visco elastic fluid
73.	Which typ	pe of blades are used for getting high pr	essur	e ratio in centrifugal pumps?
	(A)	radial blades		
	(B)	forward curved blades		
	(C)	backward curved blades		
	(D)	does not depend on blade curvature		

74.	A negativ	e slip will occur in a reciprocating pu	amp when	n:
	(A)	suction pipe is long	(B)	delivery pipe is short
	(C)	pump is running at high speed	(D)	all the above
75 .	The angle	e of deflection of the jet after hitting	the bucke	et of a Pelton wheel is approximately:
	(A)	135°	(B)	150°
	(C)	165°	(D)	185°
76.		acteristic length for calculating the l 4 m and width 8 m is :	Reynold's	number of water flowing in a channel
	(A)	6 m	(B)	8 m
	(C)	10 m	(D)	12 m
77.	One torr	is approximately equal to ————	– Pascal.	
	(A)	33.33 pascal	(B)	66.66 pascal
	(C)	133.33 pascal	(D)	760 pascal
7 8.	In the cas	se of free vortex flow, as the radius ir	ncreases t	che velocity :
	(A)	Decreases	(B)	Increases
	(C)	Remains constant	(D)	Follows a sinusoidal trend
79.		subjected to a pressure of 50 Mp sibility of water $5\times10^{-10}\mathrm{Pa}^{-1}$):	oa. The f	fractional decrease in volume will be
	(A)	1×10^{-4}	(B)	$2.5{ imes}10^{-2}$
	(C)	$2.5{ imes}10^{-4}$	(D)	1×10^{-2}
80.	4 cm diar		op of 100	aving 6 cm diameter at the inlet and pa occurs while flowing from inlet to
	(A)	0.2 m/s	(B)	0.4 m/s
	(C)	0.6 m/s	(D)	0.8 m/s
81.	Which on	e of the following is an inversion of d	louble sli	der crank mechanism?
	(A)	Skotch Yoke mechanism	(B)	Peaucellier mechanism
	(C)	Watt's indicator	(D)	Reciprocating engine

82. A conical rod of length 2 m and base diameter 25 cm hangs vertically with its base fixed rigidly to the ceiling. If its weight per unit volume is 6 kg/m^3 , the total extension produced due to its own weight in terms of its Young's modulus E will be:

(A) 4 E

(B) $\frac{4}{E}$

(C) $\frac{1}{6E}$

(D) $\frac{E}{6}$

83. The distance from the centre to the points of contra flexure in the case of a beam with a uniformly distributed load 'w' per unit length over its span 'l' and fixed at both ends is given by :

(A) $\frac{2l}{\sqrt{3}}$

(B) $\sqrt{3} l$

(C) $\frac{3l}{\sqrt{2}}$

(D) $\frac{l}{2\sqrt{3}}$

84. Two Involute gears are in mesh. The number of teeth on pinion is 20 and the gear ratio is 2. The pitch is 5 mm with the pitch line velocity 1.5 m/s. What is the length of the path of approach if it is greater than the length of path of recess and if the maximum velocity of sliding is 0.45 m/s?

(A) 15 mm

(B) 10 mm

(C) 12 mm

(D) 12.5 mm

85. In the case of a flywheel, the ratio of maximum fluctuation of energy to the rotational kinetic energy is :

(A) coefficient of fluctuation of speed

(B) half the coefficient of fluctuation of speed

(C) double the coefficient of fluctuation of speed

(D) one-fourth the coefficient of fluctuation of speed

86. The strain energy stored per unit volume for a homogeneous linear elastic isotropic material with Young's modulus E and Poisson's ratio ν when it is subjected to a state of pure shear τ is given by :

(A) $\frac{\tau(1+\nu)}{E}$

(B) $\frac{\tau^2 (1+\nu)}{E}$

(C) $\frac{\tau(1+2\nu)}{E}$

(D) $\frac{\tau^2 (1 + 2\nu)}{E}$

87.		ameter of a long load will be:	column is reduc	ed by 80%	the percentage	reduction i	in Euler's
	(A)	99.84%		(B)	98.84%		
	(C)	20%		(D)	96.84%		
0.0	. 1:		1 0 1	. 1	1 1: (7)	0 .1	

- **88.** According to Unwin's empirical formula, the nominal diameter 'd' of the rivet and the thickness 't' of the plate are related as:
 - (A) $d = 6.04\sqrt{t}$ in cm (B) $d = 1.09\sqrt{t}$ in mm (C) $d = 1.91\sqrt{t}$ in cm (D) $d = 1.69\sqrt{t}$ in mm
- **89.** Which of the following statements are true with regard to friction?
 - (i) Angle of repose is twice the semi-vertex angle of cone of friction
 - (ii) The minimum angle of inclination of the surface at which the object starts to slide down on its own is same as the semi-vertex angle of the cone of friction
 - (iii) The cone of friction is generated by the resultant of normal reaction and the applied force that is just enough to initiate motion on a horizontal surface
 - (iv) Coefficient of static friction $\mu = \tan \phi$ where ϕ is angle of repose
 - (A) only statement (iii) (B) only statements (ii), (iii) and (iv)
 - (C) only statements (i) and (iii) (D) all four statements
- **90.** The torsional rigidity of a hollow cylindrical shaft having inner radius \dot{r} , outer radius R modulus of rigidity C and length l is given by :
 - (A) $\frac{C\pi(R^4 r^4)}{2l}$ (B) $\frac{C\pi(R^4 r^4)}{l^2}$
 - (C) $\frac{2\pi C(R^4 r^4)}{2l}$ (D) $\frac{2\pi C(R^4 r^4)}{l^2}$
- **91.** In Otto cycle the heat addition takes place at :
 - (A) Constant Pressure(B) Constant Volume(C) Constant Entropy(D) None of the above
- **92.** Among the following fuels which has the highest calorific value?
 - (A) Kerosene(B) Petrol(C) Methane(D) LPG

93.	The unit o	of thermal conductivity is :		
	(A)	$ m Wm~K^{-1}$	(B)	Wm K
	(C)	$\mathrm{Wm^{-1}K^{-1}}$	(D)	$\mathrm{Wm^{-1}K}$
94.	The heat t	ransfer in natural convection is signific	cantly	affected by:
	(A)	Grashoff Number	(B)	Stanton Number
	(C)	Prandtl Number	(D)	Reynolds Number
95.	The positi	on of cooling fan in an automobile is —		—— the radiator.
	(A)	In front of	(B)	At the top of
	(C)	By the side of	(D)	Behind
96.	Efficiency	of a refrigerator ———— COP.		
	(A)	Is directly proportional to	(B)	Independent of
	(C)	Equal to	(D)	Inversely proportional to
97.	The lowes	t temperature component in a vapour	compi	ression cycle is :
	(A)	Condenser	(B)	Compressor
	(C)	Evaporator	(D)	Expansion valve
98.	Which of t	he following is not a desirable property	ofaı	refrigerant?
	(A)	Low freezing point	(B)	High thermal conductivity
	(C)	Low specific volume	(D)	Low latent heat of vaporisation
99.	The differ	ence between dry bulb temperature an	ıd wet	bulb temperature is:
	(A)	Wet bulb depression	(B)	Dew point depression
	(C)	Dry bulb depression	(D)	Degree of saturation
100.	Which line	es indicate wet bulb temperature in the	e psyc	hometric chart?
	(A)	Vertical lines	(B)	Diagonal lines
	(C)	Curves	(D)	Horizontal lines

SPACE FOR ROUGH WORK

SPACE FOR ROUGH WORK