Maximum: 100 marks

Time: 1 hour and 15 minutes

1.		the kVA load for maximum efficiency load Cu loss 1.2 kW and a core loss of 1		500/220V, 50 kVA, 50 Hz transformer
	(A)	45.64 kVA	(B)	35.33 kVA
	(C)	48.67 kVA	(D)	43.35 kVA
2.	In a trans	sformer on no load the input voltage:		
	(A)	is in phase with the magnetizing curr	ent	
	(B)	leads the magnetizing current by 90°		
	- (C)	lags the magnetizing current by 45°		
	(D)	lags the magnetizing current by 90°		
3.		arce voltage and frequency are doubled vill become:	l for a	transformer, the eddy current loss in
	(A)	half	(B)	remains the same
	(C)	doubles	(D)	4 times
4.	In a level	compounded generator, the terminal v	oltage	at half full load is :
	(A)	same as full load voltage	(B)	greater than no load voltage
	(C)	same as no load voltage	(D)	less than no load voltage
5.	A 4 pole g	generator with 16 coils has a 2 layer lap	wind	ing. The pole pitch is :
	(A)	32	(B)	16
	(C)	8	(D)	4
6.	The back driven as	emf generated by a 220V dc machin a motor 210V. What is the generated e	ne wit	h armature resistance 0.5 ohm when the machine is driven as a generator?
	(A)	230V	(B)	220V
	(C)	210V	(D)	240V
7.	For a dc s	shunt motor by flux control, we get spec	eds:	
	(A)	above normal speed only	(B)	below normal speed only
	(C)	above and below normal speed only	(D)	none of the above

8.	Swin Bur	ne's test is not suitable for :		
	(A)	shunt motor	(B)	series motor
	(C)	shunt generator	(D)	compound generator
9.	Armature	e reaction of a synchronous generat	or at rate	d voltage zpf lag is :
	(A)	Magnetizing		
	(B)	Cross magnetizing	V.	
	(C)	Demagnetizing		
	(D)	Both demagnetizing and cross ma	agnetizing	
10.		of a 3 phase 4 pole induction me across stator terminals. Calculate		es at 1000 rpm when 50 Hz supply ency of rotor induced emf:
	(A)	32.33 Hz	(B)	25.67 Hz
	(C)	45.5 Hz	(D)	16.67 Hz
11.	Class AB	operation is often used in power ar	nplifiers i	n order to :
	(A)	get maximum efficiency	(B)	remove even harmonics
	(C)	overcome cross over distortion	(D)	reduce collector dissipation
12.	The MOS	FET switch in its ON state may be	considere	d equivalent to:
	(A)	resistor	(B)	inductor
	(C)	diode	(D)	capacitor
13.	A relaxati	on oscillator is one which:		e como a mentra de la como de la
	(A)	has 2 stable states	(B)	produces non sinusoidal outputs
	(C)	relaxes indefinitely	(D)	oscillates continuously
14.	In a single	e stage CB amplifier, a smaller load	l resistanc	ce will produce :
	(A)	low voltage gain	(B)	high current gain
-4	(C)	better frequency response	(D)	high voltage gain
15.	A twisted	ring counter consists of 6 flipflops,	it will hav	7e :
	(A)	6 states	(B)	12 states
	(C)	64 states	(D)	128 states
16.	A memory	in which the contents get erased,	when power	er failure occurs :
	(A)	RAM	(B)	EAROM
	(C)	PROM	(D)	ROM

17.	Race arou	and condition occurs in J	J-K Flip Flop whe	en:	
	(A)	both inputs are zero		(B)	the inputs are complementary
	(C)	both inputs are one		(D)	none of the above
18.	A demult	iplexer can be used to re	ealize a :		
	(A)	counter		(B)	shift register
	(C)	display system		(D)	combinational circuits
19.	The logic	swing of a gate is about	0.8V. This gate b	beloi	ngs to logic family :
	(A)	TTL		(B)	ECL
	(C)	N-MOS		(D)	CMOS
20.	For a feed	lback control system of	type 2, the steady	y sta	te error for a ramp input is:
	(A)	infinite		(B)	constant
	(C)	zero		(D)	indeterminate
21.	In force c	urrent analogy, Capacit	ance is analogous	s to :	
	(A)	velocity		(B)	displacement
	(C)	mass		(D)	momentum
22.		the following quantital rotational system?	y is the same	for	mechanical translational system and
	(A)	force		(B)	mass
	(C)	moment of inertia		(D)	viscous friction coefficient
23.	The numb	per of roots of $s^3 + 5s^2 + 6$	7s + 3 = 0 in the x	right	t half of s-plane is :
	(A)	zero		(B)	one
	(C)	two		(D)	three
24.	Regenera	tive feedback means the	output is feedba	ack v	vith:
	(A)	positive sign		(B)	negative sign
	(C)	step input		(D)	oscillation
25.	An increa	se in damping factor :			
	(A)	increases peak time		(B)	is independent of peak time
	(C)	decreases peak time		(D)	results constant peak time

26.	A comper	sating network is added to:						
	(A)	(A) keep the locus of the roots constant as a system parameter is varied						
	(B)	alter the locus of the roots as a system parameter is varied						
	(C)	alter the locus without changing the position of poles and zero						
	(D)	not alter the position of poles	and zeros					
27.	The chara	acteristic equation of an armat	ure controlled	DC motor is of:				
	(A)	1st order	(B)	second order				
	(C)	zero order	(D)	3 rd order				
28.	The break	caway points of the root locus of	occurs at:					
	(A)	imaginary axis						
	(B)	real axis						
	(C)	multiple roots of the characte	eristic equation	n				
	(D)	zeros						
29.	If the dan	nping factor of a system is 1, th	ne system is :					
	(A)	under damped	(B)	over damped				
	(C)	critically damped	(D)	unstable				
30.		y meter whose constant is s. Calculate the load in kW:	700 revolution	ons / kWHr makes 5 revolutions in				
	(A)	11.51 kW	(B)	1.71 kW				
	(C)	1.21 kW	(D)	1.91 kW				
31.	The ratio	error of a current transformer	is due to:					
	(A)	exciting current	(B)	stray magnetic field				
	(C)	corona effect	(D)	leakage flux				
32.	Which me	thod is most suitable for the m	easurement o	f resistance of an ammeter shunt?				
	(A)	Wheatstone bridge	(B)	Kelvin's double bridge				
	(C)	Maxwell's bridge	(D)	Wein's bridge				
33.		ammeter has an internal resisto measure a current of 5 A :	tance of 10 oh	m. What value of shunt resistance is to				
	· (A)	2 ohm	(B)	0.2 ohm				
	(C)	0.5 ohm .	(D)	5 ohm				
995	/2015		6					

34.	For a sin	gle phase induction type energy me ux must lag the applied voltage by:	ter, to	obtain true value reading, the shunt
	(A)	180 degree	(B)	0 degree
	. (C)	45 degree	(D)	90 degree
35.	The hyste	resis error in the instrument causes :		
	(A)	change in same reading when input	is first	increased and then decreased
	(B)	slow response for increasing and dec	creasing	g input
	(C)	vibration is produced for increasing		
	(D)	overshoot during initial values in th	e scale	
36.		asuring power in a 3 phase circuit by ual and opposite when :	2 watt	meter method, the wattmeter readings
	(A)	pf = 0.8	(B)	load is balanced
	(C)	pf = 0.5	(D)	load is purely capacitive
37.	Thermoco	ouples are :		
	(A)	active transducers	(B)	passive transducers
	(C)	both active and passive	(D)	neither active nor passive
38.	In spring	controlled MI instruments. The scale	is:	
	(A)	uniform		
	(B)	cramped at lower end and scattered		
	(C)	cramped at higher end and scattere		
	(D)	cramped at both lower end and the	upper e	end
39.	The contr	colling torque in a meggar is provided	by:	
	(A)	springs		
	. (B)	eddy currents		
	(C)	weights added to moving system		
	(D)	does not need any controlling torqu	e arran	ngement
40.	Swampir	ng resistance is used to compensate th		
	(A)	temperature	(B)	
	(C)	pressure	(D)	stray magnetic field
				995/9015

41.	Multiple	trace can be accomplished in a	CRO with:	
	(A)	Horizontal deflection system	(B)	Compensation adjustment
	(C)	Dual beam CRT	(D)	
42.	In an ele	ectronic ohm meter, the OP-AMP	is used as a	
	(A)	summer	(B)	differentiator
	(C)	integrater	(D)	buffer amplifier
43.	In order electroni	to reduce the loading effect of c meter should be :	the circuit	under test, the input impedance of ar
	(A)	low	(B)	high
	(C)	medium	(D)	constant
44.	Electroni	c volt meters are more accurate r because of its:	for high resi	stance circuits as compared to ordinary
	(A)	high volt/ohm rating	(B)	high ohm/volt rating
	, (C)	high resolution	(D)	high output impedance
45.	If the dut	y cycle of a pulse waveform clan	nped around	zero is 0.5. What is its crest factor?
	(A)	2.22	(B)	1.118
	(C)	3.1	(D)	1.9
46.	A digital down volt 0.85 pf?	power factor meter converts pf tage is 2V, CT ratio 1:40 and re	into frequen ectifier gain	cy and is counted. If the peak stepped is 1. What would be the frequency for
	(A)	21.65 Hz	(B)	43.33 Hz
	(C)	51.44 Hz	(D)	30.5 Hz
47.	The voltage	ge sensitivity of a multi meter is	s 20mV. Its i	nternal resistance is 40 ohm. Then its
	(A)	2 milli ampere	(B)	5 micro ampere
	(C)	500 micro ampere	(D)	0.8 A
18.	irequency	phase meter with ZCD is fed with but with a phase displacement. ds are 1.5 msec, what is the mea	If the time d	al voltages of the same amplitude and lelay with them is 0.15 msec and their difference:
	(A)	36°.36'	(B)	45°
	(C)	85° 46'	(D)	180°

49.	A differe amplifier	ential amplif	ier inpu	its are 5 n	nV and 3 mV	V. The outpu	ut is 300 m	V. What is the
	(A)	70			(B)	67		***
	(C)	150			(D)	300		
50.	If the ba	ndwidth of a rder to be ac	n oscillo curately	scope is 12 reproduce	MHz, what d by the instr	is the fastes ument?	st rise time a	sine wave can
	(A)	42 msec			(B)	19 msec		
	(C)	49 msec			(D)	29 msec		
51.	2 identica current o	al coils of 200 f 8 A flows th) turns e rough o	ach, lie in a	a parallel pla I the mutual	ne and produ inductance :	uced a flux of	'400 mWb. If a
	(A)	10 H			(B)	2 H		
	(C)	8 H			(D)	6 H		
52.	A coil of i 50 Hz sup	nsulated wir	e of resis te the ac	stance 8 oh	m and induct	ance 0.03 H	are connecte	d across 240 V
	(A)	5 kW			(B)	3.01 kW		
	(C)	6.83 kW			(D)	1.03 kW		
53.	Peak fact	or of a sinus	oidal wa	ve is:				
	(A)	1.11			(B)	1.414		
	(C)	0.707 ·			(D)	0.637	9	
54.	The magn	etic hysteres	sis is pri	marily due	to:			
	(A)	permeabilit			(B)	flux density	v	
	(C)	retentivity			(D)	coercivity		
55.								consists of an consumed by
	(A)	48 kW			(B)	52 kW		
	(C)	$24.01~\mathrm{kW}$			(D)	34.5 kW		
56.	formed by	applied acro 2 parallel n d the electric	netal pla	ates each o	n capacitance f area 200 cm	is 0.0004 mi n² and separ	icro farad. The	ne capacitor is electric 4 mm
	(A)	4×10 ⁻⁴ C/m	12		(B)	2×10 ⁻⁴ C/m	12	
	(C)	6×10 ⁻⁴ C/m	2		(D)	8×10 ⁻⁴ C/m	n^2	

57.	If the indu	ictance of a series circuit i	s increased, its res	soliance frequency.
	(A)	increases	(B)	decreases
	(C)	remains the same	(D)	is determined by the resistance
58.	In a balan	ced delta connected 3 phas	se system, line cur	rents lags the phase currents by:
	(A)	60°	(B)	30°
	(C)	90°	(D)	120°
59.	If there a	re n nodes in a circuit, the	en the number of	equations needed to solve the network
	using nod	al analysis is :		
	(A)	n+1	(B)	n
	(C)	n-1	(D)	n-2
60.	The powe	r dissipation in each of 4 p	arallel branch of	a circuit is 1 W. Total power dissipation
	is:			- W
	(A)	1 W	(B)	2 W
	(C)	8 W	(D)	4 W
61.	If the len		is doubled and it's	s cross section is halved, its resistance
	(A)	2 times	(B)	3 times
	(C)	halved	(D)	4 times
62.		power station has an ana	nual peak load of	50 MW. The annual load factor is 0.45.
	(A)	27 MW	(B)	24.75 MW
	(C)	25 MW	(D)	22.5 MW
63.	Absorption	on of neutrons in a nuclear	reactor is done by	
	(A)	Moderator	(B)	Control rods
	(C)	Reflector	(D)	Coolant
64.	In a hydr	oelectric power plant, sudo	len rise of pressur	e in the penstock pipe is managed with:
	(A)	surge tank	(B)	turbine
	(C)	spillway	(D)	draft tube
225	/2015		10	A

65.	The tariff	The tariff that takes into account of the power factor of the consumer is:						
	(A)	Sliding scale tariff	(B)	Block rate tariff				
	(C)	2 part tariff	(D)	Maximum demand tariff				
66.	An over e	xcited synchronous motor running	on no load	l is called :				
	(A)	Synchronous generator	(B)	Synchronous condenser				
	(C)	Induction generator	(D)	Induction motor				
67.	High load	l factor :						
	(A)	Increases cost per unit generated	1					
	(B)	Reduces cost per unit generated						
	(C)	Increases variable load problems						
	(D)	Causes frequent use of regulating	g devices					
68.	The major	r disadvantage of solar power gene	ration :					
	(A)	cost of fuel	(B)	corrosion				
	(C)	large area requirement	(D)	pollution				
69.	Calculate power fac	[1] [1] [1] [2] [2] [2] [2] [2] [3] [3] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4	raws a cur	rent of l.5 kA at a voltage 20 kV with a				
	(A)	24 kW	(B)	24 kVAR				
	(C)	18 kVA	(D)	18 kVAR				
70.	The zero	sequence component always flow t	hrough:					
	(A)	phase wires	(B)	neutral wire				
	(C)	earth wire	(D)	any of the above				
71.	Most suit	able method earthing of a delta con	nnected ge	nerator is:				
	(A)	plate earthing	(B)	pipe earthing				
	(C)	transformer earthing	(D)	resistance earthing				
72.	The insul	ation resistance is measured by :						
	(A)	Earth tester	(B)	Wheatstone's bridge				
	(C)	Kelvin's bridge	(D)	Meggar				
73.	Acceptabl	e limit of earth resistance for dome	estic instal	lations:				
	(A)	less than 10 ohm	(B)	less than 12 ohm				
	(C)	less than 14 ohm	(D)	less than 15 ohm				

74.	In Incandescent lamps, coiled coil filaments are used for:					
	(A)	higher wattage lamps	(B)	gas filled lamps		
	(C)	low wattage lamps	(D)	coloured lamps		
75.	The chok	e of a fluorescent lamp is healthy,	when the s	series connected test lamp with choke :		
	(A)	glows bright	(B)	is dark		
	(C)	glows dim	(D)	flicker		
76.	The volum	me of conductor required for transn	nitting a fi	xed amount of power is:		
	(A)	inversely proportional to V ²	(B)	inversely proportional to pf		
	· (C)	proportional to voltage	(D)	proportional to pf		
77.	LT cables	are used for voltages below:				
	(A)	,11 kV	(B)	1 kV		
	(C)	5 kV	(D)	10 kV		
78.	When wo	od is used as insulator, it will come	under wh	nich class of insulators?		
	(A)	Υ	(B)	C		
	(C)	Н	(D)	В		
79.	Insulator	s employed for locations where the	re is a cha	nge in direction of the line :		
	(A)	pin type	(B)	suspension type		
	(C)	shackle type	(D)	strain type		
80.	The frequ	ency of flickers in a fluorescent lan	np at 220	V 50 Hz supply will be :		
	(A)	25 Hz	(B)	50 Hz		
	(C)	100 Hz	(D)	220 Hz		
81.	Who was	the founder of the Basel Mission in	Malabar?			
	(A)-	Rev. Mead	(B)	Rev. Dawson		
	(C)	Rev. Baker	(D)	Rev. Gundert		
82.	Who was	hailed as the father of political mov	vement in	Malabar?		
	(A)	N. Raman Pillai	(B)	Ramakrishna Pillai		
	(C)	G. Parameswaran Pillai	(D)	C.V. Raman Pillai		

12

225/2015

83.	The Socia	d organization Travancore Muslim Mal	najan	a Sabha was founded by :
	(A)	V. K. Kunjahammed Haji	(B)	Abdur Rehman Sahib
	(C)	Imbichi Koya Thangal	(D)	Vakkam Abdul Khadir Moulavi
84.	The politi	cal organization formed as a part of the	e Abs	tention Movement in Kerala :
	(A)	Joint Political Conference	(B)	Kerala provincial Congress
	(C)	All Kerala Political Congress	(D)	Youth League
85.	The found	der of the Atma Vidya Sangam was :		
	(A)	Vaikunda Swamikal	(B)	Swami Agamananda
	(C)	Chattampi Swamikal	(D)	Swami Vagbhatananda
86.	Who was	the first person to write the biography	of Ka	rl Marx in Malayalam?
	(A)	A.K. Gopalan	(B)	E.M.S. Namboothirippad
	(C)	Ramakrishna pilla	(D)	C. Kesavan
87.	The Book	Bilathiyile Viseshangal was written by	:	
	(A)	M. Mukundan	(B)	M.T. Vasudevan Nair
	(C)	S.K. Pottekkad	(D)	K.P. Kesava Menon
88.	The first	Fravelogue in Malayalam :		
	(A)	Rajya Samacharam	(B)	Varthamana Pusthakam
	(C)	Paschimodayam	(D)	Samkshaepa Vedartham
89.	The Britis	sh official who conducted a special enqu	iry in	to the cause of Mappila riots :
	(A)	William Logan	(B)	H.V. Cannolly
	(C)	T.L. Strange	(D)	T.H. Barber
90.	The Mala	yalam scholar who is hailed as the fathe	er of l	Modern Malayalam Prose :
	(A)	A.R. Raja Raja Varma	(B)	Kunjikuttan Thampuran
	(C)	Kerala Varma Valiya Koyi Thampuran	(D)	Rama Varma
91.	The first I	ndian women to preside over the UN G	enera	al assembly:
	(A)	Vijayalakshmi Pandit	(B)	Rajkumari Amrit Kour
	(C)	Sarojini Naidu	(D)	Captain Lakshmi
92.	Who has b	een appointed as the first vice chairma	n of l	NITI AYOG?
	(A)	Aravind Panagariya	(B)	V.K. Saraswat
	(C)	Sindhushree Khullar	(D)	Thawar Chand Geblot

93.	The only rice museum of the world is situating at:						
	(A)	New Delhi	(B)	Beijing			
	(C)	Manila	(D)	Moscow			
94.	Who is the	e only woman appointed as the Chief E	lectio	n Commissioner of India?			
	(A)	V.S. Rema Devi	(B)	Jayanthi Patnaik			
	(C)	Sujatha V. Manohar	(D)	Nirupama Rao			
95.	The mid I	Day Meal scheme covered under the mi	nistry	of:			
	(A)	Health and Family Welfare	(B)	Human Resource Development			
	(C)	Social Justice and Empowerment	(D)	Human Rights			
96.	Feroz Gar	ndhi award is given for outstanding per	forms	ance in the field of:			
	(A)	Journalism	(B)	Medical Research			
	(C)	Preservation of wild life	(D)	Parliamentary debate			
97.	The only	Indian women to win an Olympic meda	l is:				
	(A)	Shiny Wilson	(B)	Sania Mirsa			
	(C)	Karnam Malleswari	(D)	P.T. Usha			
98.	The Mana	nv Adhikar Bhavan at New Delhi is the	Head	Quarters of the National:			
	(A)	Election Commission	(B)	Human Rights Commission			
	(C)	Child Rights Protection Commission	(D)	Commission for Minority			
99.	Who won	the Gandhi Peace Prize for the year 20	13?				
	(A)	Chandi Prasad Bhatt	(B)	L.K. Advaní			
	(C)	Malala Yousuf	(D)	A.B. Vajpayee			
100.	Psepholog	gy is the study of:					
	(A)	Social behaviour	(B)	Election			
	(C)	Social relations	(D)	Ruling			